Software development using
B method

Julien Cervelle
LACL - UPEC

Outline

Introduction

B abstract machine

First order logic of set theory
Substitutions

Proof obligations
Refinement

Introduction

B method was invented by Jean-Raymond Abrial

Member of the “Green team” who win the contest of the US
department of defense designing Ada language, late 80ies

Designed the Z specification language based on set theory

Designed the B language to add the refinement notion and a proof
obligation system

Main concepts

Formal specification of software
Data
Operations
Constraints

Tools which ensure everything thing written meet the specifications
Proof obligations
Invariant conservation
Post-condition, pre-condition, loop invariant and variant

Refinement which allows to gradually reach the final software

Outline

B abstract machine

Data structures in B

Comes from the ZF set theory

Base elements are sets and integers (and reals though they are not
yet implemented)

Every complex data structures are based on these elements
Relations are sets of ordered pairs

Function are relations

Sequences and arrays are functions

Typing

Difference with the ZF set theory
Integers are not sets
ordered pairs are a special construct (and not (a,b)={{a},{a,b}})

Everything must be properly typed
Symbols are not introduced with their types (like in the C language)
Typing is done in the logical formula which specifies the symbol

Location of typing
Invariant for state variables
Precondition for operation parameter
Selection formula for set comprehension {x | ¢(x)}

B abstract machine

The internal data of the machine is called its state
It consists in variables which contains all values needed to perform the
machine tasks

The environment can perform operations on the machine

An operation has possibly an input and possibly an output
It can consult and modify the variables

The B abstract machine look like an instance of some class

Complete different philosophy from OO software development
One software = one machine

B abstract machine component

Symbols
* CONSTANTS

* VARIABLES
* OPERATIONS

Specification
* PROPERTIES
* INVARIANT

e Substitutions

MACHINE
Counter
CONSTANTS
max_value
PROPERTIES
max_valueeN;
VARIABLES
count
INVARIANT
counteN A count £ max_value
INITIALISATION
count:=0
OPERATIONS
inc = PRE count<max_value
THEN count:=count+1
END;
dec = PRE count>0
THEN count:=count-1
END;
reset = count:=0;
set(value) = PRE
valueeN, A value £ max_value
THEN count:=value
END;
value <& get = value:=count
END

Example

Outline

First order logic of set theory

First order logic and set theory

Usual first order logic
OVY, dAY, -0
Ax.(P), Vx.(P)
Sets and ordered pairs
(x,y) but better noted (x —y)
Set by extension {m;, m,, ..., m_}
Set comprehension {x|®} or generally {x,y,...|}}

Predicate are carried by sets through set comprehension

Predicate PRED(x), true if x meets some condition ¢
Would be the constant PRED={x|x meets c}

Operations on sets

Usual operator
EUF, ENF, E-F, ExF
XEE, ECF

Power set

A type can be used as a set (e.g. F=Nx{v})
Power set of E is [P(E)
Set of finite sets of E is [F(E)

Relations

Relations between two sets (or types) E and F are subsets of ExF
E<>F = {X,yIXEEAYEF} = {x—>y|IxEEAYEF} = {(x,y)IXEEAYEF}

Relations play an important role in B
No object notion in B
Just some seldom used “record” notion
To add an attribute att of type E to some data D...
...we add a relation E<>D named att to the machine

Example

MACHINE

StudentTable
SETS

Student; Lesson; Teacher
VARIABLES

teaches,follows
INVARIANT

teaches€Teacheré=>Lesson A followseStudent<>Lesson
INITIALISATION

teaches:ETeacher<=>Lesson | | follows:EStudenté=>Lesson
END

Partial functions

Functions are special kind of relations

Partial function allows at most one y in relation with some x
E + F = {RIREE<>F AVXVyVz.(x»YER A x—zER = z=v)}

Total function requires exactly one y in relation with any x
E - F ={R|IREE»FAVX.(xEE=3Ty.(x—YyER))}

Usual notion of surjectivity, injectivity and bijectivity
For total or partial functions
Allows to simply specified cardinalities (databases definition)
Each has its notation: » » »» - >» >»

Example

MACHINE
StudentTable
SETS
Student; Lesson; Teacher
VARIABLES
has_teacher,follows
INVARIANT
has_teacher€lLesson+Teacher A followseStudent<—>Lesson
INITIALISATION
has_teacher:ELesson-+Teacher | | follows:EStudenté=>Lesson
END

Operations on relation and functions

Inverse

Composition

Domain and codomain (range)
Transitive closure

Image R[E] = {y|3Ax.(XxEEAXx—>YER)}

Domain and codomain restrictions, if REE<>F:
G<R = RNGxF, GYR = R-GxF
R>G = RNExG, RBG = R-ExG

Relation overridding

Outline

* Substitutions

Substitution

A formal description of how to modify the variables
Looks like a method of an object

Is defined using first order logic

Can be non-deterministic

Can have parameters and return values

Some substitutions

X:=y means x becomes equal toy
counter := 0, has_teacher(b_method):=johnson

IF ¢ THEN s1 ELSE s2 END

IF param>max_value THEN x:=max_value ELSE x:=param END

x:(d) means x becomes as ¢ (previous value of x is denoted by xS0)
normalize = x:(x<=max_value)

Can be generalized as x,y,...:(})
normalize = x,max_value:(x<=max_value)

X:EE means x becomes any member of E (useful for initialization)

Other substitutions

ANY, LET allows to use temporary constants

With a given value (LET)

With a given property (ANY)
SELECT, CASE, IF allows to chose the substitution depending on
conditions

From the value of an expression (CASE)

Test sequentially (IF)
Chosen non-deterministically among true formulas (SELECT)

PRE is a special substitution to add preconditions to operations

Parallelism

If multiple variable are to be modified, the substitutions are done in
parallel

x:=y | | y:=x allows to swap the content of variables
Can be written
X,Y:(x=ySOAy=xS0)

No sequential operation of loop in B except for the last refinement
(called implementation)

Outline

Proof obligations

B method

The core of B method is to proof in a software the the specification is
correct

The initialization must make the variable verifies the invariant
Each operation must maintain the invariant

Each written formula must be sound

Writing f(x) generates the proof obligation that xedom(f)

Taking the maximum of E generates E#@ and E has an upper bound
Note that this makes A non commutative

xEdom(f) A f(x)=12 is correct but not f(x)=12 A xEdom(f)

B tools

Software for B method is Atelier-B
http://www.atelierb.eu/en/telecharger-latelier-b

It comes with automated tools for proof
Predicate prover
Mono-lemma prover
Mini prover
Interactive prover (was people want to avoid)

Substituting logical formula

The key notion behind proof obligation generation is the weakest
precondition

If S is a substitution and ¢ a formula, [S]® is the weakest formula such
that

If the variables verifies [S]® and one applies S
Then the variables verifies d once S applied

For instance, [x:=x+1]x=5 is x=4

The automated process replaces x by x+1 in x=5 and obtains x+1=5
[X:ER]x>0 is REN

The automated process produces Vx.(xER=x>0)

Outline

* Refinement

Refinement

Refinement allows two things

Data refinement
Allows to narrow the state of the machine to go toward the implementation

The refinement requires a “gluing invariant” which describe how the original
state is computed from the refined state

Detail refinement
Allows to add more details to what is to be done by the machine
This refinement can adds variables to the machine

The two refinement can be mixed up

Example: Data refinement

Abstract machine Concrete machine

* Queue of maximum length MAX ¢ Circular buffer

* Taking values from a set E * Represented by:

e Represented by: array: an array of length MAX
e fENSE e offset € 0..MAX-1
« begin,end € N * lengthe 0..MAX

array

length

begin end offset

Example: Detail refinement

Abstract machine
* Door control system

e status € {OPEN,CLOSE}
* light € {RED, GREEN}
* status=CLOSE < light=RED

Concrete machine
* open_angle€0..120 /*degree*/
* light2 € {RED,YELLOW,GREEN}
* open_angle =0 = light2 = RED
e open_angle € 1..90 =

light2 = YELLOW
* open_angle €91..120 =

light2 = GREEN

