
Software development using
B method

Julien Cervelle

LACL - UPEC

Outline

• Introduction

• B abstract machine

• First order logic of set theory

• Substitutions

• Proof obligations

• Refinement

Introduction

• B method was invented by Jean-Raymond Abrial

• Member of the “Green team” who win the contest of the US
department of defense designing Ada language, late 80ies

• Designed the Z specification language based on set theory

• Designed the B language to add the refinement notion and a proof
obligation system

Main concepts

• Formal specification of software
• Data

• Operations

• Constraints

• Tools which ensure everything thing written meet the specifications
• Proof obligations

• Invariant conservation

• Post-condition, pre-condition, loop invariant and variant

• Refinement which allows to gradually reach the final software

Outline

• Introduction

• B abstract machine

• First order logic of set theory

• Substitutions

• Proof obligations

• Refinement

Data structures in B

• Comes from the ZF set theory

• Base elements are sets and integers (and reals though they are not
yet implemented)

• Every complex data structures are based on these elements

• Relations are sets of ordered pairs

• Function are relations

• Sequences and arrays are functions

Typing

• Difference with the ZF set theory
• Integers are not sets

• ordered pairs are a special construct (and not ⟨a,b⟩={{a},{a,b}})

• Everything must be properly typed
• Symbols are not introduced with their types (like in the C language)

• Typing is done in the logical formula which specifies the symbol

• Location of typing
• Invariant for state variables

• Precondition for operation parameter

• Selection formula for set comprehension {x ∣ φ(x)}

B abstract machine

• The internal data of the machine is called its state
• It consists in variables which contains all values needed to perform the

machine tasks

• The environment can perform operations on the machine
• An operation has possibly an input and possibly an output

• It can consult and modify the variables

• The B abstract machine look like an instance of some class
• Complete different philosophy from OO software development

• One software = one machine

B abstract machine component

Symbols

• CONSTANTS

• VARIABLES

• OPERATIONS

Specification

• PROPERTIES

• INVARIANT

• Substitutions

Example
M

A
C

H
IN

E

C
o

u
n

ter

C
O

N
STA

N
TS

m
ax_

valu
e

P
R

O
P

ER
TIES

m
ax_

valu
e
∈
ℕ

₁

V
A

R
IA

B
LES

co
u

n
t

IN
V

A
R

IA
N

T

co
u

n
t∈
ℕ
∧

co
u

n
t ≤ m

ax_
valu

e

IN
ITIA

LISA
TIO

N

co
u

n
t:=0

O
P

ER
A

TIO
N

S

in
c

= P
R

E co
u

n
t<m

ax_valu
e

TH
EN

 co
u

n
t:=co

u
n

t+
1

EN
D

;

d
ec

= P
R

E co
u

n
t>0

TH
EN

 co
u

n
t:=co

u
n

t-1

EN
D

;

reset = co
u

n
t:=

0
;

set(valu
e

) = P
R

E

valu
e
∈
ℕ

₁ ∧
valu

e ≤ m
ax_

valu
e

TH
EN

 co
u

n
t:=valu

e

EN
D

;

valu
e ←

 get
= valu

e:=co
u

n
t

EN
D

Outline

• Introduction

• B abstract machine

• First order logic of set theory

• Substitutions

• Proof obligations

• Refinement

First order logic and set theory

• Usual first order logic
• Φ ∨ ψ, φ ∧ ψ, ¬φ

• ∃x.(φ), ∀x.(φ)

• Sets and ordered pairs
• (x,y) but better noted (x↦y)

• Set by extension {m1, m2, …, mn}

• Set comprehension {x∣φ} or generally {x,y,…∣φ}

• Predicate are carried by sets through set comprehension
• Predicate PRED(x), true if x meets some condition c

• Would be the constant PRED={x∣x meets c}

Operations on sets

• Usual operator
• E∪F, E∩F, E-F, E×F

• x∈E, E⊂F

• Power set
• A type can be used as a set (e.g. F=ℕ×{v})

• Power set of E is ℙ(E)

• Set of finite sets of E is 𝔽(E)

Relations

• Relations between two sets (or types) E and F are subsets of E×F
• E↔F = {x,y∣x∈E∧y∈F} = {x↦y∣x∈E∧y∈F} = {(x,y)∣x∈E∧y∈F}

• Relations play an important role in B
• No object notion in B

• Just some seldom used “record” notion

• To add an attribute att of type E to some data D…

…we add a relation E↔D named att to the machine

Example

MACHINE

StudentTable

SETS

Student; Lesson; Teacher

VARIABLES

teaches,follows

INVARIANT

teaches∈Teacher↔Lesson ∧ follows∈Student↔Lesson

INITIALISATION

teaches:∈Teacher↔Lesson || follows:∈Student↔Lesson

END

Partial functions

• Functions are special kind of relations

• Partial function allows at most one y in relation with some x
• E⇸ F = {R∣R∈E↔F ∧∀x∀y∀z.(x↦y∈R ∧ x↦z∈R⟹ z=y)}

• Total function requires exactly one y in relation with any x
• E → F = {R∣R∈E⇸F∧∀x.(x∈E⟹∃y.(x↦y∈R))}

• Usual notion of surjectivity, injectivity and bijectivity
• For total or partial functions

• Allows to simply specified cardinalities (databases definition)

• Each has its notation: ↠ ↣ ⤖⤀ ⤔⤗

Example

MACHINE

StudentTable

SETS

Student; Lesson; Teacher

VARIABLES

has_teacher,follows

INVARIANT

has_teacher∈Lesson⇸Teacher ∧ follows∈Student↔Lesson

INITIALISATION

has_teacher:∈Lesson⇸Teacher || follows:∈Student↔Lesson

END

Operations on relation and functions

• Inverse

• Composition

• Domain and codomain (range)

• Transitive closure

• Image R[E] = {y∣∃x.(x∈E∧x↦y∈R)}

• Domain and codomain restrictions, if R∈E↔F:
• G◁R = R∩G×F, G⩤R = R-G×F

• R▷G = R∩E×G, R⩥G = R-E×G

• Relation overridding

Outline

• Introduction

• B abstract machine

• First order logic of set theory

• Substitutions

• Proof obligations

• Refinement

Substitution

• A formal description of how to modify the variables

• Looks like a method of an object

• Is defined using first order logic

• Can be non-deterministic

• Can have parameters and return values

Some substitutions

• x:=y means x becomes equal to y
• counter := 0, has_teacher(b_method):=johnson

• IF φ THEN s1 ELSE s2 END
• IF param>max_value THEN x:=max_value ELSE x:=param END

• x:(φ) means x becomes as φ (previous value of x is denoted by x$0)
• normalize = x:(x<=max_value)

• Can be generalized as x,y,…:(φ)
• normalize = x,max_value:(x<=max_value)

• x:∈E means x becomes any member of E (useful for initialization)

Other substitutions

• ANY, LET allows to use temporary constants
• With a given value (LET)

• With a given property (ANY)

• SELECT, CASE, IF allows to chose the substitution depending on
conditions
• From the value of an expression (CASE)

• Test sequentially (IF)

• Chosen non-deterministically among true formulas (SELECT)

• PRE is a special substitution to add preconditions to operations

Parallelism

• If multiple variable are to be modified, the substitutions are done in
parallel
• x:=y || y:=x allows to swap the content of variables

• Can be written
• x,y:(x=y$0∧y=x$0)

• No sequential operation of loop in B except for the last refinement
(called implementation)

Outline

• Introduction

• B abstract machine

• First order logic of set theory

• Substitutions

• Proof obligations

• Refinement

B method

• The core of B method is to proof in a software the the specification is
correct

• The initialization must make the variable verifies the invariant

• Each operation must maintain the invariant

• Each written formula must be sound
• Writing f(x) generates the proof obligation that x∈dom(f)

• Taking the maximum of E generates E≠∅ and E has an upper bound

• Note that this makes ∧ non commutative
• x∈dom(f) ∧ f(x)=12 is correct but not f(x)=12 ∧ x∈dom(f)

B tools

• Software for B method is Atelier-B

http://www.atelierb.eu/en/telecharger-latelier-b

• It comes with automated tools for proof
• Predicate prover

• Mono-lemma prover

• Mini prover

• Interactive prover (was people want to avoid)

Substituting logical formula

• The key notion behind proof obligation generation is the weakest
precondition

• If S is a substitution and φ a formula, [S]φ is the weakest formula such
that
• If the variables verifies [S]φ and one applies S

• Then the variables verifies φ once S applied

• For instance, [x:=x+1]x=5 is x=4
• The automated process replaces x by x+1 in x=5 and obtains x+1=5

• [x:∈R]x⩾0 is R⊆ℕ
• The automated process produces ∀x.(x∈R⟹x⩾0)

Outline

• Introduction

• B abstract machine

• First order logic of set theory

• Substitutions

• Proof obligations

• Refinement

Refinement

• Refinement allows two things

• Data refinement
• Allows to narrow the state of the machine to go toward the implementation

• The refinement requires a “gluing invariant” which describe how the original
state is computed from the refined state

• Detail refinement
• Allows to add more details to what is to be done by the machine

• This refinement can adds variables to the machine

• The two refinement can be mixed up

Example: Data refinement

Abstract machine

• Queue of maximum length MAX

• Taking values from a set E

• Represented by:
• f ∈ ℕ→E

• begin,end ∈ ℕ

Concrete machine

• Circular buffer

• Represented by:
• array: an array of length MAX

• offset ∈ 0..MAX-1

• length∈ 0..MAX

f

begin end

array

offset

length

Example: Detail refinement

Abstract machine

• Door control system

• status ∈ {OPEN,CLOSE}

• light ∈ {RED, GREEN}

• status=CLOSE ⟺ light=RED

Concrete machine

• open_angle∈0..120 /*degree*/

• light2 ∈ {RED,YELLOW,GREEN}

• open_angle = 0 ⟹ light2 = RED

• open_angle ∈ 1..90 ⟹

light2 = YELLOW

• open_angle ∈91..120 ⟹

light2 = GREEN

