Software development using B method

Julien Cervelle

LACL - UPEC

Outline

- Introduction
- B abstract machine
- First order logic of set theory
- Substitutions
- Proof obligations
- Refinement

Introduction

- B method was invented by Jean-Raymond Abrial
- Member of the "Green team" who win the contest of the US department of defense designing Ada language, late 80ies
- Designed the Z specification language based on set theory
- Designed the B language to add the refinement notion and a proof obligation system

Main concepts

- Formal specification of software
 - Data
 - Operations
 - Constraints
- Tools which ensure everything thing written meet the specifications
 - Proof obligations
 - Invariant conservation
 - Post-condition, pre-condition, loop invariant and variant
- Refinement which allows to gradually reach the final software

Outline

- Introduction
- B abstract machine
- First order logic of set theory
- Substitutions
- Proof obligations
- Refinement

Data structures in B

- Comes from the ZF set theory
- Base elements are sets and integers (and reals though they are not yet implemented)
- Every complex data structures are based on these elements
- Relations are sets of ordered pairs
- Function are relations
- Sequences and arrays are functions

Typing

- Difference with the ZF set theory
 - Integers are not sets
 - ordered pairs are a special construct (and not (a,b)={{a},{a,b}})
- Everything must be properly typed
 - Symbols are not introduced with their types (like in the C language)
 - Typing is done in the logical formula which specifies the symbol
- Location of typing
 - Invariant for state variables
 - Precondition for operation parameter
 - Selection formula for set comprehension $\{x \mid \varphi(x)\}$

B abstract machine

- The internal data of the machine is called its state
 - It consists in variables which contains all values needed to perform the machine tasks
- The environment can perform operations on the machine
 - An operation has possibly an input and possibly an output
 - It can consult and modify the variables
- The B abstract machine look like an instance of some class
 - Complete different philosophy from OO software development
 - One software = one machine

B abstract machine component

Symbols

- CONSTANTS
- VARIABLES
- OPERATIONS

Specification

- PROPERTIES
- INVARIANT
- Substitutions

MACHINE

Counter

CONSTANTS

max_value

PROPERTIES

max_value∈N₁

VARIABLES

count

INVARIANT

count∈N ∧ count ≤ max_value

INITIALISATION

count:=0

OPERATIONS

inc = PRE count<max_value

THEN count:=count+1

END;

dec = PRE count>0

THEN count:=count-1

END;

reset = count:=0;

set(value) = PRE

value∈N₁ ∧ value ≤ max_value

THEN count:=value

END;

value ← get = value:=count

Example

END

Outline

- Introduction
- B abstract machine
- First order logic of set theory
- Substitutions
- Proof obligations
- Refinement

First order logic and set theory

- Usual first order logic
 - Φ V ψ, φ Λ ψ, ¬φ
 - ∃x.(φ), ∀x.(φ)
- Sets and ordered pairs
 - (x,y) but better noted $(x \mapsto y)$
 - Set by extension {m₁, m₂, ..., m_n}
 - Set comprehension {x|φ} or generally {x,y,...|φ}
- Predicate are carried by sets through set comprehension
 - Predicate PRED(x), true if x meets some condition c
 - Would be the constant PRED={x|x meets c}

Operations on sets

- Usual operator
 - EUF, E∩F, E-F, E×F
 - x∈E, E⊂F
- Power set
 - A type can be used as a set (e.g. $F=\mathbb{N}\times\{v\}$)
 - Power set of E is $\mathbb{P}(E)$
 - Set of finite sets of E is $\mathbb{F}(E)$

Relations

- Relations between two sets (or types) E and F are subsets of ExF
 - $E \longleftrightarrow F = \{x,y | x \in E \land y \in F\} = \{x \mapsto y | x \in E \land y \in F\} = \{(x,y) | x \in E \land y \in F\}$
- Relations play an important role in B
 - No object notion in B
 - Just some seldom used "record" notion
 - To add an attribute att of type E to some data D...
 - ...we add a relation $E \longleftrightarrow D$ named att to the machine

Example

MACHINE

StudentTable

SETS

Student; Lesson; Teacher

VARIABLES

teaches, follows

INVARIANT

teaches∈Teacher←→Lesson ∧ follows∈Student←→Lesson

INITIALISATION

teaches:∈Teacher←Lesson || follows:∈Student←Lesson

END

Partial functions

- Functions are special kind of relations
- Partial function allows at most one y in relation with some x
 - E \rightarrow F = {R|R \in E \leftrightarrow F $\land \forall x \forall y \forall z.(x \mapsto y \in R \land x \mapsto z \in R \Longrightarrow z = y)}$
- Total function requires exactly one y in relation with any x
 - $E \rightarrow F = \{R | R \in E \rightarrow F \land \forall x. (x \in E \Longrightarrow \exists y. (x \mapsto y \in R))\}$
- Usual notion of surjectivity, injectivity and bijectivity
 - For total or partial functions
 - Allows to simply specified cardinalities (databases definition)
 - Each has its notation: → → → → → → → →

Example

MACHINE StudentTable

SETS

Student; Lesson; Teacher

VARIABLES

has_teacher,follows

INVARIANT

has_teacher∈Lesson → Teacher ∧ follows∈Student ← Lesson

INITIALISATION

has_teacher:∈Lesson→Teacher || follows:∈Student←>Lesson

END

Operations on relation and functions

- Inverse
- Composition
- Domain and codomain (range)
- Transitive closure
- Image R[E] = $\{y \mid \exists x.(x \in E \land x \mapsto y \in R)\}$
- Domain and codomain restrictions, if $R \in E \longleftrightarrow F$:
 - $G \triangleleft R = R \cap G \times F$, $G \triangleleft R = R G \times F$
 - $R \triangleright G = R \cap E \times G$, $R \triangleright G = R E \times G$
- Relation overridding

Outline

- Introduction
- B abstract machine
- First order logic of set theory
- Substitutions
- Proof obligations
- Refinement

Substitution

- A formal description of how to modify the variables
- Looks like a method of an object
- Is defined using first order logic
- Can be non-deterministic
- Can have parameters and return values

Some substitutions

- x:=y means x becomes equal to y
 - counter := 0, has_teacher(b_method):=johnson
- IF φ THEN s1 ELSE s2 END
 - IF param>max_value THEN x:=max_value ELSE x:=param END
- x:(φ) means x becomes as φ (previous value of x is denoted by x\$0)
 - normalize = x:(x<=max_value)
- Can be generalized as x,y,...:(φ)
 - normalize = x,max_value:(x<=max_value)
- x: E means x becomes any member of E (useful for initialization)

Other substitutions

- ANY, LET allows to use temporary constants
 - With a given value (LET)
 - With a given property (ANY)
- SELECT, CASE, IF allows to chose the substitution depending on conditions
 - From the value of an expression (CASE)
 - Test sequentially (IF)
 - Chosen non-deterministically among true formulas (SELECT)
- PRE is a special substitution to add preconditions to operations

Parallelism

- If multiple variable are to be modified, the substitutions are done in parallel
 - x:=y | | y:=x allows to swap the content of variables
- Can be written
 - $x,y:(x=y$0 \land y=x$0)$
- No sequential operation of loop in B except for the last refinement (called implementation)

Outline

- Introduction
- B abstract machine
- First order logic of set theory
- Substitutions
- Proof obligations
- Refinement

B method

- The core of B method is to proof in a software the the specification is correct
- The initialization must make the variable verifies the invariant
- Each operation must maintain the invariant
- Each written formula must be sound
 - Writing f(x) generates the proof obligation that x∈dom(f)
 - Taking the maximum of E generates E≠Ø and E has an upper bound
- Note that this makes A non commutative
 - $x \in dom(f) \land f(x)=12$ is correct but not $f(x)=12 \land x \in dom(f)$

B tools

- Software for B method is Atelier-B
 http://www.atelierb.eu/en/telecharger-latelier-b
- It comes with automated tools for proof
 - Predicate prover
 - Mono-lemma prover
 - Mini prover
 - Interactive prover (was people want to avoid)

Substituting logical formula

- The key notion behind proof obligation generation is the weakest precondition
- If S is a substitution and φ a formula, [S]φ is the weakest formula such that
 - If the variables verifies [S]φ and one applies S
 - Then the variables verifies φ once S applied
- For instance, [x:=x+1]x=5 is x=4
 - The automated process replaces x by x+1 in x=5 and obtains x+1=5
- $[x:\in R]x\geqslant 0$ is $R\subseteq \mathbb{N}$
 - The automated process produces $\forall x.(x \in R \Longrightarrow x \geqslant 0)$

Outline

- Introduction
- B abstract machine
- First order logic of set theory
- Substitutions
- Proof obligations
- Refinement

Refinement

- Refinement allows two things
- Data refinement
 - Allows to narrow the state of the machine to go toward the implementation
 - The refinement requires a "gluing invariant" which describe how the original state is computed from the refined state
- Detail refinement
 - Allows to add more details to what is to be done by the machine
 - This refinement can adds variables to the machine
- The two refinement can be mixed up

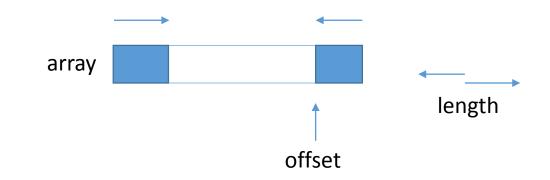
Example: Data refinement

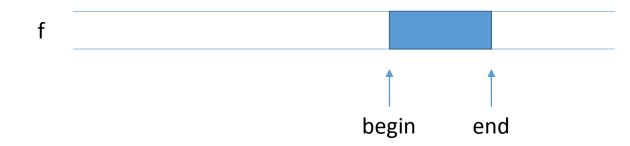
Abstract machine

- Queue of maximum length MAX
- Taking values from a set E
- Represented by:
 - $f \in \mathbb{N} \rightarrow E$
 - begin, end $\in \mathbb{N}$

Concrete machine

- Circular buffer
- Represented by:
 - array: an array of length MAX
 - offset ∈ 0..MAX-1
 - length∈ 0..MAX





Example: Detail refinement

Abstract machine

- Door control system
- status ∈ {OPEN,CLOSE}
- light ∈ {RED, GREEN}
- status=CLOSE ⇔ light=RED

Concrete machine

- open_angle∈0..120 /*degree*/
- light2 ∈ {RED,YELLOW,GREEN}
- open_angle = $0 \implies light2 = RED$
- open_angle ∈ 1..90 ⇒ light2 = YELLOW
- open_angle ∈91..120 ⇒ light2 = GREEN